Computing metric hulls in graphs
نویسندگان
چکیده
We prove that, given a closure function the smallest preimage of a closed set can be calculated in polynomial time in the number of closed sets. This confirms a conjecture of Albenque and Knauer and implies that there is a polynomial time algorithm to compute the convex hull-number of a graph, when all its convex subgraphs are given as input. We then show that computing if the smallest preimage of a closed set is logarithmic in the size of the ground set is LOGSNP-complete if only the ground set is given. A special instance of this problem is computing the dimension of a poset given its linear extension graph, that was conjectured to be in P. The intent to show that the latter problem is LOGSNP-complete leads to several interesting questions and to the definition of the isometric hull, i.e., a smallest isometric subgraph containing a given set of vertices S. While for |S| = 2 an isometric hull is just a shortest path, we show that computing the isometric hull of a set of vertices is NP-complete even if |S| = 3. Finally, we consider the problem of computing the isometric hull-number of a graph and show that computing it is Σ2 complete.
منابع مشابه
A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملExtended graphs based on KM-fuzzy metric spaces
This paper, applies the concept of KM-fuzzy metric spaces and introduces a novel concept of KM-fuzzy metric graphs based on KM-fuzzy metric spaces. This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to extend the concept of KM-fuzzy metric spaces to a larger ...
متن کاملSolis Graphs and Uniquely Metric Basis Graphs
A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...
متن کاملComputing Wiener and hyper–Wiener indices of unitary Cayley graphs
The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملLearning Affine Hull Representations for Multi-Shot Person Re-Identification
We consider the person re-identification problem, assuming the availability of a sequence of images for each person, commonly referred to as video-based or multi-shot reidentification. We approach this problem from the perspective of learning discriminative distance metric functions. While existing distance metric learning methods typically employ the average feature vector as the data exemplar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.02958 شماره
صفحات -
تاریخ انتشار 2017